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Abstract A fluorescent cholesterol analog, 3'-pyrenylmethyl- 
23,24-dinor-5-cholen-22-oate-3/3-01 (PMCA), has been synthe- 
sized as a spectroscopic probe of cholesterol function. The sub- 
strate activity of PMCA, about two-thirds that of cholesterol, 
with lecithin:cholesterol acyltransferase indicates that PMCA is 
a reasonable cholesterol analog and that the orientation of the 
substituted sterol in the phospholipid interface is similar to that 
of cholesterol. The fluorescence properties of PMCA are similar 
to those of other pyrene-containing compounds that exhibit 
concentration-dependent excimer fluorescence. The rate of 
transfer of ['HIPMCA between HDL is about six times faster 
than cholesterol. These results indicate that the analog will be 
useful in studies of cholesterol function. -Kao, Y. J., M. C. 
M y ,  and L. C. Smith. Transfer of cholesterol and a fluores- 
cent cholesterol analog, 3'-pyrenyimethyl-23,24-dinor-5-cholen- 
22-oate-38-01, between human plasma high density lipoproteins. 
J LipidRcs. 1986. 27: 781-785. 
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The singular importance of cholesterol is illustrated 
dramatically by the pathological deposition of cholesterol 
and cholesteryl ester in the arterial walls (1, 2). The 
molecular basis of this phenomenon is unknown. Active 
hypotheses being studied include u )  unregulated cellular 
cholesterol synthesis, 6) cellular processing of chemically 
modified cholesteryl ester-rich lipoproteins taken up by 
specific lipoprotein receptors, and c) inadequate egress of 
cholesterol from various tissue pools (3). Because choles- 
terol does not possess suitable spectroscopic features, 
studies (4-10) of its behavior in dilute aqueous solutions 
of lipid aggregates and in cells have been difficult. The 
objective of this study was to prepare a fluorescent 
cholesterol analog and to compare several physical and 
biological properties of the analog with those of the 
naturally occurring lipid. This comparison is necessary to 
establish that the introduction of the spectroscopic 

reporter group does not change the properties of the 
analog to such an extent that it is not useful in studies of 
mechanisms of biologically interesting processes involving 
the parent compound. An abstract of this work has 
appeared (11). 

MATERIALS AND METHODS 

Materials 

3-Acetoxybisnorcholenic acid was purchased from Stera- 
loids, Inc. and recrystallized from benzene prior to use. 
Pyrene-3-carboxyaldehyde and NaBH4 were products of 
Aldrich Chemical Co. Egg phosphatidylcholine was 
purchased from Avanti, Inc. NaB['H]* was obtained from 
ICN Radiochemicals. [G-'H]Cholesterol, 1 Ci mmol-', 
was purchased from Amersham. All other chemicals were 
the highest commercially available grade. 

Synthesis 

PMCA was synthesized by esterification of 3-pyrenyl- 
methanol with 3@-acetoxy-22,23-dmr-5-cholen-24-oyl chlo- 
ride, followed by selective basic hydrolysis of the acetoxy 
group. 
Pyrene-3-carboxyaldehyde, 5 g, was dissolved in 200 ml 

of dioxane and 1 g of NaBH4 was added with vigorous 
stirring. During the reaction, the dull green color of the 
solution changed to yellow. After 2 hr, the solvent was 
removed under vacuum. The product was washed with 

Abbreviations: PMCA, 3'-pyrenylmethyl-23,24-dinor-5-chden-22-oate- 
3&ok PC, phosphatidylcholine; HDL, high density lipoproteins; 
VLDL, very low density lipoproteins; LDL, low density lipoproteins; 
LCAT, 1ecithin:cholesterol acyltransferase. 
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1 N HCl, then several times with water. 3-Pyrenyl- 
methanol was obtained from ethanol-H,O as yellow 
crystals. Yield 4.4 g; mp 123-125OC (12). 
3/3-Acetoxybisnorcholenic acid was purified and con- 

verted to the acyl chloride as published (13). A mixture of 
4 g of the acyl chloride, 1 g of 4-dimethylaminopyridine 
and 2 g of 3-pyrenylmethanol in 100 ml of benzene was 
stirred on a steam bath until the solvent had evaporated. 
The residue, dissolved in 200 ml of benzene, was 
extracted with 200 ml of 2 N NaOH. After the insoluble 
material was filtered off, the organic layer was washed 
with 1 N HCl, then with H 2 0  until the aqueous solution 
was neutral. After removal of benzene under reduced 
pressure, the ester and minor impurities weighed 5.5 g. 
The crude acetoxy ester was dissolved in 100 ml of 
methanolic 0.1 N NaOH and refluxed for 30 min. The 
extent of hydrolysis was monitored by thin-layer chro- 
matography in hexane-diethyl ether-acetic acid-water 
9O:lO:l:l (VI.). Final purification was carried out with a 
Merck Lobar G-60 prepacked silica gel column, 3.7 x 44 
cm. PMCA was eluted with a linear gradient of hexane- 
chloroform 4:l (+) and chloroform at 5 ml min-' in 3 hr. 
The total yield of PMCA was 4.1 g. The purity of PMCA 
was established by recycling through a Waters (2-18 
Bondapack column, 4 x 25 mm, with 3000 theoretical 
plates. After recycling five times, no impurities were 
observed; mp 225OC; mass spectrum (m/e, relative 
abundance) 560, M' (39%); 542 (10%); 469 (5%); 366 
(8%); 329 (10%); 315 (6%); 230 (6%); 215 (100%); 216 
(68%); 201 (11%); 207 (12%). 

3'-Pyrenyl-[ 3H]-methyl-23,24-dino~-5-cholen-22-oate-3/3- 
01 was synthesized by the reduction of pyrene-3-carboxy- 
aldehyde with NaB[3H]4, sp act 249 mCi mmol-'. The 
resultant 3-pyrenyl-[3H]methan~l was utilized for the 
synthesis of PMCA as described above. 

For experiments of [3H]cholesterol and [3H]PMCA 
transfer between HDL and VLDL, 1 pCi of [3H]cholesterol 
or [3H]PMCA in 0.1 ml of ethanol was injected with 
continuous vortexing into 1 mg of HDL protein in 1 ml 
of buffer. The resultant solutions were incubated at 37OC 
for 2 hr for equilibration of HDL with the labeled sterol 

and then passed through a 0.22-pm Millipore filter. Ten pg 
of [3H]sterol-labeled HDL in 1 ml was mixed with 1 ml 
of 1 mg VLDL at 37OC. At specific time points, 0.1-ml 
aliquots of the reaction mixture were removed, chilled in 
ice, and applied to 0.5 x 10 cm A-5m agarose columns at 
4OC. Within 30 sec after introduction of the mixture on 
the column, the separation of HDL and VLDL was essen- 
tially complete. Fractions containing VLDL and HDL 
were collected to quantify radioactivity by scintillation 
counting. Identical results were obtained when VLDL 
were precipitated by addition of 75 pl 1 M MnC12 and 
separated from HDL by centrifugation at 1500 g for 2 min 
(14). The relatively poor solubility of PMCA in ethanol 
required the use of relatively high proportions of solvent, 

which may have changed HDL structure. For comparison 
of the two sterols, identical conditions were used for label- 
ing of HDL with [3H]cholesterol. 

RESULTS AND DISCUSSION 

To demonstrate that PMCA was functional as a 
substrate analog of cholesterol, the two compounds were 
compared as acyl acceptors in egg PC vesicles in the en- 
zymic reaction catalyzed by 1ecithin:cholesterol acyltrans- 
ferase (15). With a partially purified enzyme preparation 
under experimental conditions previously described (16), 
20 and 14 pmols of cholesteryl ester and PMCA ester, 
respectively, were formed pg-' protein min-', in a reaction 
mixture that contained 40 kg of protein and 0.1 mM egg 
PC containing 10 mol 76 of either cholesterol or PMCA. 
The analog was about two-thirds as active as cholesterol, 
as shown in Fig. 1. 

The space-filling models of PMCA and cholesterol, 
shown in Fig. ZA, illustrate the extent of differences 
between the molecules in the side chain region. PMCA 
contains the pyrene nucleus as the bulky component of 
the 170 substituent of cholesterol instead of the usual non- 
polar aliphatic hydrocarbon region (Fig. 2B). Both the 
3P-hydroxy group and an intact steroid core are essential 
for the interaction between cholesterol and phospholipid, 
but steric requirements of the hydrophobic alkyl chain are 
much less stringent (17). Evaluation of several cholesterol 
analogs indicates that the size of this substituent is less 
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Comparison of cholesterol and PMCA as substrates for LCAT. Fig. 1. 

782 Journal of Lipid Research Volume 27, 1986 

 by guest, on June 19, 2012
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org/


CHOLESTEROL FMCA ' _  

Fig. 2. A, Molecular models of cholesterol  and PMCA. B. Molecular formula  for PMCA. 

important  than  the hydrophobicity (18-20). Although the 
bulk of the substituent differs, both cholesterol and 
PMCA have a hydrophobic side chain region. Previous 
studies with similar cholesterol analogs (13,  21, 22) 
demonstrated  that modification of this structural region 
of cholesterol had only minor effects on  the physical and 
enzymatic properties of the sterol. 

The spectroscopic properties of PMCA  are similar to 
those reported for other pyrene and pyrene-containing 
lipids studied in this laboratory (23-27). PMCA in HDL 
exhibited a linear relationship between I& and  the 

amount of PMCA between 3 and 12 molecules per HDL. 
As expected, when mixed with unlabeled HDL, the 
excimer fluorescence decreased. The pseudo first order 
observed rate constant was 0.5 min" and was independent 
of the concentration of acceptor and donor HDL and of 
the  amount of PMCA  per  HDL. 

The transfer of [3H]cholesterol between HDL and 
VLDL was an  apparent first order process,  with a rate 
constant of 0.09 min" under these experimental condi- 
tions. This  rate, observed with unfractionated HDL, is 
only about twofold different from the  rate of transfer of 
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cholesterol from HDL, and HDL3 in the absence of 
organic solvents (8). This comparison suggests that the 
faster rate that we observed was due to the solvent effect 
on the solubility of the two sterols (7, 9, 23, 24), and that 
the solvent effect was minor. Control experiments with 
[ 'HIPMCA demonstrated that the rate constants for 
transfer of PMCA from HDL to VLDL determined spec- 
troscopically and by physical separation of donor and 
acceptor lipoproteins were identical, 0.5 min-'. The rate 
of transfer of PMCA is about six times faster than 
cholesterol. 

The oleate ester of PMCA has proven to be highly use- 
ful in studies of LDL metabolism. LDL containing 
PMCA oleate' was utilized to visualize LDL receptor by 
fluorescence microscopy (28, 29) and to produce cell 
mutants by receptor-dependent photosensitization (30- 
32). Since little is known about the dynamics of the 
intracellular distribution of cholesterol and related com- 
pounds, this pyrene analog, with other fluorescent sterols 
and derivatives (33-36), should be valuable in studies of 
cellular uptake of sterols. 1111 

'Available from Molecular Probes, Inc, 4849 Pitchford Avenue, Eu- 
gene, OR 97402. 
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